Savitribai Phule Pune University			
Third Year of E & Tc Engineering (2019 Course)			
304183: Database Management			
Teaching Scheme:	Credit	Examination	Scheme:
Theory: 03 hrs. / week	03	In-Sem (Theory):	30 Marks
		End Sem (Theory):	70 Marks
Prerequisite Courses, if any: 1. Data Structures			
Companion Course, if any: Databa	ase Management Lab		
Course Objectives:	on onto of dotabase from	. ita dagi ga ta ita inanlamant	
To understand fundamental (To applyze detabase require)	concepts of database from	the entities involved in the	auton.
• 10 analyze database requir	ements and determine	the entities involved in the	system and with one
To manipulate database usin	a SOL Query to create u	indate and manage Database	
Be familiar with the basic iss	sues of transaction proce	ssing and concurrency control	ol
To learn and understand Para	allel Databases and its A	chitectures	51.
To learn and understand Dist	tributed Databases and it	s applications	
Course Outcomes: On completion of	of the course learner will	be able to -	
CO1: Ability to implement the under	CO1 : Ability to implement the underlying concepts of a database system.		
CO2: Design and implement a databa	ase schema for a given p	roblem-domain using data m	10del.
CO3: Formulate, using SQL/DWL/L	urraney control and ha al	is to a wide range of query an	iu upuate problems.
CO5 : Able to understand various Par	rallal Databasa Arabitaat	uras and its applications	
CO6 : Able to understand various Par	stributed Databases and i	te applications	
	Course Con	tonts	
Linit I	Introductio	on to DRMS	(07 Hrs.)
Introduction to Database Managemen	nt Systems, Purpose of D	atabase Systems, Database-S	System Applications.
Data Abstraction and Database Syste	m Structure.		II III III
Relational Model: Structure of relational databases, Domains, Relations, Relational algebra – fundamental operators and syntax, relational algebra queries, tuple relational calculus.			
Entity-Relationship model: Basic Concepts, Entity Set, Relationship Sets and Weak Entity Sets, Mapping Cardinalities, Keys, E-R diagrams, Design Issues, Extended E-R Features, Converting E-R & EER diagram into tables.			
MappingofCourseCO1: AtOutcomes for Unit I	bility to implement the	underlying concepts of a da	atabase system.

 • • •	
nit	
	11

Relational Database Design

(06 Hrs.)

Basic concepts, CODD's Rules, Relational Integrity: Domain, Referential Integrities, Enterprise Constraints, Database Design: Features of Good Relational Designs, Normalization, Atomic Domains and First Normal Form, Decomposition using Functional Dependencies, Algorithms for Decomposition, 2NF, 3NF, 4NF and BCNF.

Mapping of Course Outcomes for Unit II	CO2: Design and implement a database schema for a given problem- domain using data model.	
Unit III	Basics of SQL	(07 Hrs.)

DDL, DML, DCL, Structure: Creation, Alteration, Defining constraints – Primary key, Foreign key, Unique key, Not null, Check, IN operator, Functions - Aggregate Functions, Built-in Functions –Numeric, Date, String Functions, Set operations, sub-queries, correlated subqueries, Use of group by, having, order by, join and its types, Exist, Any, All, view and its types.

Transaction control commands: Commit, Rollback, Save-point PL/SQL Concepts: Cursors, Stored Procedures, Stored Function, Database Triggers.

Mapping of Course Outcomes for Unit III	CO3: Formulate, using SQL/DML/DDL commands, solutions to a wide range of query and update problems.	
Unit IV	Database Transactions Management	(07 Hrs.)

Basic concepts of a Transaction, Transaction Management, Properties of Transactions, Concept of Schedule, Serial Schedule, Serializability: Conflict and View, Cascaded Aborts, Recoverable and Non-recoverable Schedules, Concurrency Control: Need, Locking Methods, Deadlock handling and Time-stamp based Protocols.

Mapping of Course Outcomes for Unit IV	CO4: Implement transactions, concurrency control, and be able to do Database recovery.		
Unit V	Parallel Databases	(06 Hrs .)	

Introduction to Database Architectures: Multi-user DBMS Architectures, Case study- Oracle Architecture.

Parallel Databases: Performance Parameters for Parallel Databases, Types of Parallel Database Architecture, Evaluating Parallel Query in Parallel Databases and Virtualization on Multicore processors.

Mapping of Course Outcomes for Unit V	CO5: Able to understand various Parallel Database Arch applications.	itectures and
Unit VI	Distributed Databases	(07 Hrs.)
Distributed Databases: Distributed Database Management System, Factors Encouraging DDBMS, Advantages		
of Distributed Databases, Types of Distributed Databases, Architecture of Distributed Databases, Distributed		
Database Design, Distributed Data Storage, and Distributed Transaction: Basics, Failure modes, Commit		
Protocols, Concurrency Control in Distributed Database.		

Mapping of CourseCO6: Able to understand various Distributed Databases and itsOutcomes for Unit VIapplications.

Learning Resources

Text Books:

- 1. A. Silberschatz, H.F. Korth and S. Sudarshan, "Database System Concepts", McGraw Hill, 6th Edition.
- 2. C.J. Date, A. Kannan, S. Swamynathan "An introduction to Database Systems", Pearson, 8th Edition.

Reference Books:

- 1. Martin Gruber, "Understanding SQL", Sybex Publications.
- 2. Ivan Bayross, "SQL- PL/SQL", BPB Publications, 4th Edition.
- 3. S.K. Singh, "Database Systems: Concepts, Design and Application", Pearson, Education, 2nd Edition.

MOOC / NPTEL Courses:

1. NPTEL Course "Database Management System" Link of the Course: <u>https://nptel.ac.in/courses/106/106/106106220/</u>